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Abstract: Stem tapers are mathematical functions modelling the relative decrease of diameter (rD) as
the relative height (rH) increase in trees and can be successfully used in precision forest harvesting.
In this paper, the diameters of the stem at various height of 202 Pinus nigra trees were fully measured
by means of an optical relascope (CRITERION RD 1000) by adopting a two-steps non-destructive
strategy. Data were modelled with four equations including a linear model, two polynomial functions
(second and third order) and the Generalised Additive Model. Predictions were also compared with
the output from the TapeR R package, an object-oriented tool implementing the β-Spline functions
and widely used in the literature and scientific research. Overall, the high quality of the database was
detected as the most important driver for modelling with algorithms almost equivalent each other.
The use of a non-destructive sampling method allowed the full measurement of all the trees necessary
to build a mathematical function properly. The results clearly highlight the ability of all the tested
models to reach a high statistical significance with an adjusted-R squared higher than 0.9. A very low
mean relative absolute error was also calculated with a cross validation procedure and small standard
deviation were associated. Substantial differences were detected with the TapeR prediction. Indeed,
the use of mixed models improved the data handling with outputs not affected by autocorrelation
which is one of the main issues when measuring trees profile. The profile data violate one of the basic
assumptions of modelling: the independence of sampled units (i.e., autocorrelation of measured
values across the stem of a tree). Consequently, the use of simple parametric equations can only be a
temporary resource before more complex built-in apps are able to allow basic users to exploit more
powerful modelling techniques.

Keywords: silviculture; ecological modelling; ecological mathematics; precision forestry; statistical sampling;
optical relascopy

1. Introduction

The European black pine (Pinus nigra J.F. Arnold) sometimes reported as the Austrian pine or
simply the black pine, is a long-lived tree botanically recognized as a collective species occurring across
the northern part of the Mediterranean basin, from Spain to Turkey [1]. Thanks to its ability to grow
on poor and bare soils, this tree has been widely used for ecological restoration activities across the
whole of Europe since the beginning of the 20th century and especially after the first and second world
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wars [2,3]. The main aim of many reforestation programs has been to avoid landslides and to fight
land abandonment when people were moving from the countryside to the cities in the early 1950s [4].
As expected, the use of this species improved the soil quality after decades of agricultural exploitation,
allowing the ecological succession and the restoration of native hardwood forest tree species of the
climatic envelope, generally composed by trees belonging to the Quercus genus [5].

According to the data delivered with the last available national forest inventory (INFC2005), pure
European black pine stands in Italy cover an area of 444,785 ha (Figure 1) representing 4.25% of the
whole forest area [6], with an age ranging from 50 to 95 years. Most of these stands were established
under the main reforestation program that occurred after the Second World War.
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Pandering to the well known ecological requirements of the species due to its ability to adapt
to many different environments [7], seeds came from many areas of the natural range to be used
in many different ecological conditions. The Calabrian provenance (Pinus nigra subsp. laricio) was
collected from Southern stands populations [8] and a different ecotype was selected from Northern
populations, the Austrian pine (Pinus nigra subsp. nigra), naturally occurring on the borders between
Italy and Austria [9]. While the first was planted on acid soils, the second one was mainly used
on calcareous conditions [3,10]. In addition, a third and ecologically intermediate variety was often
used in central Italy, coming from a small and isolated population close to the town of Villetta Barrea,
province of Aquila (Pinus nigra spp. nigra var. italica) and currently acknowledged as a marginal forest
population [11]. Overall, artificial stands were established for hydrological purposes, soil protection
and for social wellbeing. Unfortunately, forest management plans were rarely applied, few thinning
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interventions were made in both private or public areas and consequently, the economic interest in this
species decreased gradually.

Optimal assortment allocation is a key element in the wood products supply chain [12], particularly
artificial stands. The use of spatial indices and models to describe the structure of a forest and to support
forest management trajectories [13–16] are nowadays acknowledged as compulsory in a precision
forestry framework [17,18] but research in this area, in Italy, is in serious delay [19]. Recent studies also
raised the interest in the ability of Pinus nigra spp. to provide a wide range of ecosystem services [20,21]
creating an ecologically dynamic system where biodiversity level increased quickly, thanks to all the
ecological processes restored due to the artificial stands [22]. A new potential roundwood market has
also been studied in addition to woodchips [5,23] and non-woody products such as truffles [24,25].
Research on modelling tools targeted at a simple and cost-effective management of European black
pine trees is aimed at favouring this market.

Stem taper functions [12,19,26,27] are needed to support the decision-making process where
trees are characterized according to the potential assortments to be retrieved from harvesting. Such
functions are used to model the diameter reduction of the stem as distance from the ground (i.e., height
along the tree) increases. Modelling stem taper and volume is crucial in many forest management
and planning systems dealing with economic aspects. Taper models are used to predict the diameter
size at any location along the stem. These predictions provide flexible means to estimate the volume
of the stem and of any assortments potentially achievable in forest harvesting [27]. A great variety
of equation structures have been proposed as the mathematical core of taper functions, estimating
(for a given species, in given growing conditions) stem diameter (d(h)) at height (h) along the stem
with diameter at breast height and tree height as additional input parameters. In the past, data came
from felled trees where all the stem was easily accessible on the ground and measurements with a
calliper or a tape were possible. Researchers were also forced to follow enterprises activities, with
safety risks. Moreover, felled trees were sometimes damaged, malformed and small, such as those
deriving from thinning with a potential impact on the predictive model. Nowadays, an optical tool
simplified the work [12]. The data required for model calibration can be easily measured on standing
trees by means of optical instruments such as Terrestrial Laser Scanning (TLS) or older instruments as
Bitterlich’s relascope, the Finnish parabolic calliper or optical telescopes.

This paper reports the results from a study concerning sample size optimization and taper
function model complexity evaluation. In this paper, a comparative test between modelling methods
was performed, running on a two-stages-derived dataset with measurement coming from a survey
campaign in 2018. An optical relascope was used here (CRITERION RD-1000), allowing the sampling
of 202 European black pine trees without felling. The main aim of this paper was to demonstrate the
importance of an adequate sampling criteria and the low impact of the tool used to build the model
(i.e., the mathematical function).

2. Materials and Methods

2.1. Sampling Method

Sample size heavily conditions research cost (or is conditioned by research funds) and in this
work, specific efforts were made to use the minimum sampling size required to produce a useful result.
In random sampling with uniform probabilities, the minimum number of samples required to provide
an estimate of the population mean with an error not exceeding ε at a confidence level of p can be
estimated by the following formula, also used in forest monitoring [28]:

n = (
t·CV
ε

)
2

(1)

where n is the number of samples to be effectively measured, CV is the coefficient of variation (CV) of
the parameter to be estimated, ε is the relative error (= 5% in this case) and t is the value of Student’s
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t for a given confidence level (generally 95%). The importance of a reliable CV estimate is one of
the most critical steps and needs to be evaluated before sampling campaign. To achieve this, two
common ways are generally proposed: i) exploiting historical data or previous studies in similar areas;
ii) carrying out an exploratory analysis in test areas. For this study case, a high-quality, detailed and
recent dataset was available for two study areas in Central Italy where more than 4000 Pins nigra trees
were geo-referenced and measured in two evenly aged 50 year-old stands. The data stem from the A2
action of the SelPiBio LIFE+ project and are freely available in a public repository [10]. Among the
provided data, the diameter, height and crown projection on the ground were the most basic. Indeed,
no profile measurements were made. Firstly, 80 trees were randomly sampled by means of a stratified
random using the DBH classes and the quartiles as strata (20 trees x 4 quartiles = 80 trees in total). The
elements of this exploratory sample were located thanks to the availability of the coordinates and of
the ID number marked on the stem and measured for stem taper. Afterwards, the remaining trees to
be measured were measured in a second-step activity and added to this starting dataset.

In order to use Equation (1), data were firstly standardized to deal with their use in profile
functions (i.e., relative diameter as a function of relative height). While all the heights were transformed
in proportion of the total height of the trees, the same was done for diameters which were divided by
the diameter at breast height. Then, the CV values of the measured diameters at any measurement
distance from the ground (i.e., CV10%m, CV15%m, CV20%m, etc.) were calculated to obtain an n value for
each stratum using Equation (1). Then, the maximum n value in the range 10% - 90% was used as the
reference number of samples to be representative at any section of the stem, except the top, which
was not of interest and was too variable to be sampled in a cost-effective way. The final n value was
estimated iteratively. Indeed, the sample size n conditions the determination of t. The starting values
and degrees of freedoms (DF) were first estimated using an n0 value equal to n-1 (with n0 = 80 in
this case). Then, the calculation of t0 was performed to find n1 samples. Afterwards, the DF were
recalculated again using n1 samples and a new t1 was estimated and so on, until nx stabilized.

2.2. Stem Taper Functions

Stem taper functions model the relative decrease of diameter (rD) as the relative height (rH)
increases. As the reference diameter, defining the relative value, possible options are the maximum
value along the stem or the diameter at breast height (DBH). However, the relative decrease of the
diameter should be referred to a directly measurable and easy to access parameter. For this reason, in
this paper, the collected data were standardized by dividing the diameter we measured in each tree
at each sampling height by the DBH. Four equations were tested, including polynomials of degrees
from 1 to 3 as well as a non-parametric model. The selected models correspond to a simple linear
model—Equation (2)—second and third order polynomial models—eq. (3) and (4), respectively—and
a Generalized Additive Model (GAM)—eq. (5). The relative diameter of the stem measured at each
sampling height (rDi) was modelled as a function of the relative height of the tree (rHi):

rD = α+ β·rH + ε (2)

rD = α+ β·rH2 + γ·rH + ε (3)

rD = α+ β·rH3 + γ·rH2 + δ·rH + ε (4)

rD = s(rH) + ε (5)

where and α, β, γ and δ·are the coefficients to be estimated and ε is the error term representing the
amount of remaining unexplained deviation. Concerning GAM, the notation s( . . . ) denotes the use of
the smoothing function for modelling.

The selection of the best performing model was then based on the underlying physical-biological
process (i.e., the expected shape) of the rD–rH relationship as well as the possibility to replicate (i.e., use)
the model beyond the compiled dataset and the here-described research work. In order to derive
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indications on the goodness of fit, the predictions from the four mathematical models were tested by a
cross-validation procedure reserving 25% randomly extracted from the database for this purpose. The
mean relative absolute error (MAE) and the fraction of explained variance or r-squared (R2) were used
as indicators and to test whether the sampling strategy generated fair models with an error below the
threshold we used in Equation (1), which was 5%. The random extraction was repeated 1000 times and
single-run MAE and R2 values were then averaged to an obtain unbiased estimation of goodness of
fit. The best performing model was finally compared with the output from TapeR package [27] an
object-oriented tool where more complex equations are implemented, such as the cubic regression
models using β-Splines and mixed models, running in R statistical language [29]. The setup we used
for the TapeR package was four knots positioned at 0.0, 0.12, 0.75, 1.0 relative heights and a fourth
order spline function for fixed effects (cubic). Then, we used three knots positioned at 0.0, 0.1 and
1.0 and a fourth order spline function for random effects (cubic).

2.3. Measurement Technique

In this work, profile measurements of model trees were carried out with a non-destructive
method on standing trees by use of an electronic relascope, the CRITERION RD 1000 by laser
technology®(https://www.lasertech.com/Criterion-RD-1000.aspx). This optical instrument allows to
measure the diameter of every section of the stem on standing trees at any visible height chosen by the
user, with the horizontal distance between the operator and the tree as the parameter to adjust the
optical scope. Thanks to this tool, all selected trees were fully measured, including all the social ranks,
dimensions and generating an unbiased sample for stem taper equation fitting. The stem profile of
all the selected tree was here fully measured with the CRITERION RD 1000, measuring the diameter
every meter from the ground to the top. The instrument was combined with a TruPulse360B Laser
Rangefinder form Laser Technology (https://www.lasertech.com/TruPulse-Laser-Rangefinder.aspx)
using a serial cable to record distance from the target tree. The distance from the trees is a key parameter
for the optical relascope in order to derive metric values from the bandwith the operator set in the
instrument’s scope for measurement. Overall, the average distance from target trees ranged between
15 and 20 meters, which allowed a clear view of the stem reducing distortion. The quality assessment
of measurements was made by comparing the first three measurements we obtained with CRITERION
RD 1000 (i.e., ground level, 1 meter and 2 meters from the ground) with the values we measured with
a calliper assessing an accuracy around 98%.

3. Results

Based on the 80 trees measured as the pilot sample and the iterative process, the size of the final
sample required to estimate the mean of the most sensitive sections (between the ground and 90% of the
total height of trees) with an error within 5%, at a 95% confidence level, was estimated to be just above
207. However, the iterative process on sampling data stabilized on a value or 202 trees to be measured
for an error equal to 5% (Table 1) The variability of the relative diameter increased as the relative
distance from the ground increased with a maximum CV of 1.783 at the top. In the collected sample
trees, the maximum height was 23.5 metres, a measure reached by only a few trees while the average
height of the stand was around 18 m for both study areas. Concerning the structure of analysed stands
and according to the collected data, stem diameters at central height classes, between 11.5 and 14.5
metres from the ground, were detected as the most variable. Even if, apparently in contrast with wood
anatomy where the bottom of the stem is usually observed as the most variable, due to many causes
such as the steep slope of the ground, the presence of basal buttresses of the stem etc., this aspect is an
expected result given the structure of the stands we studied. No thinning intervention was applied
since its establishment around 1950s [3,5]. This led to a stratified stand with many suppressed trees still
alive and reaching heights between 11 and 14 metres. Therefore, such small diameters we measured
with the optical relascope, increased the CV of the stratum and consequently, the number of trees to be

https://www.lasertech.com/Criterion-RD-1000.aspx
https://www.lasertech.com/TruPulse-Laser-Rangefinder.aspx
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measured. However, the standardisation of the data and the calculation of the relative diameter (rDi)
simplified the model fitting, cleaning the database and allowing models to work properly.

Table 1. Coefficient of variation for each cross-section of Pinus nigra trees measured with CRITERION
RD 1000 calculated using the 80 trees measured in the first stage sampling and derived number of trees
(n) to be fully measured to achieve a statistical error lower than or equal to 5% according to Equation (1)
and iterative self-calibrating estimation of sample size using p = 0.95, ε = 5% and a starting at n = 80.

Relative Height
Class

Mean Relative
Diameter

Standard
Deviation CV Number of

Samples

0.00–0.05 1.028 0.023 0.022 1

0.05–0.10 0.988 0.020 0.021 1

0.10–0.15 0.941 0.035 0.037 2

0.15–0.20 0.890 0.035 0.039 2

0.20–0.25 0.842 0.040 0.047 3

0.25–0.30 0.798 0.043 0.055 5

0.30–0.35 0.758 0.047 0.063 6

0.35–0.40 0.716 0.049 0.068 7

0.40–0.45 0.680 0.051 0.075 9

0.45–0.50 0.635 0.052 0.082 10

0.50–0.55 0.594 0.058 0.098 15

0.55–0.60 0.552 0.057 0.104 17

0.60–0.65 0.504 0.064 0.126 24

0.65–0.70 0.456 0.067 0.146 33

0.70–0.75 0.404 0.075 0.185 52

0.75–0.80 0.345 0.072 0.209 67

0.80–0.85 0.278 0.077 0.277 118

0.85–0.90 0.194 0.070 0.363 207

0.90–0.95 0.105 0.056 0.536 441

0.95–1.00 0.017 0.030 1.783 4885

Iteration DF t Number of Samples to Be
Measured

1 79 1.9905 206

2 205 1.9716 202

3 201 1.9718 202

The fitting ability of the four tested models is summarised in Table 2 and graphically shown in
Figure 2. Overall, very low MAE with small associated standard deviations were calculated with the
cross-validation procedure. R2 values were always higher than 0.95 and all the models were statistically
significant at a 95% confidence level. In this scenario, only slight differences were detectable between
the models. GAM was the best performing algorithm and the linear model was the worst. This
was also reflected by the slightly lower R2 and higher MAE. Concerning the remaining GAM and
third-order polynomial models, only the last one was selected for a further comparison with TapeR
prediction. This was due to the complexity of GAM to run on external data and outside the modelling
framework (i.e., the R environment in this case), even if characterised by a better fitting.
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Table 2. Cross validation results.

Model Mean Relative Absolute Error Explained Variance

Linear 0.03273 (±0.96 × 10–3) 96.1% (±0.60 × 10–3)

Second order polynomial 0.03195 (±0.85 × 10–3) 97.1% (±0.55 × 10–3)

Third order polynomial 0.01362 (±0.83 × 10–3) 97.4% (±0.49 × 10–3)

GAM 0.01254 (±0.84 × 10–3) 97.5% (±0.50 × 10–3)
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MAE values estimated by cross-validation are actually much lower than the maximum tolerated
5% error value used to determine sample size. MAE values appear quite constant for all relative
heights (Figure 3). The sample size estimation procedure could possibly be improved in order to
reduce oversampling in case of greater budget limitations.
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Finally, the third-order polynomial function was selected as the most simple and effective model.
Calibrating it using the complete data set, the final coefficients were estimated and are reported in
Table 3. The inflection was detected around rH = 0.55, demonstrating a sort of change of the relationship
between rD and rH almost in the middle of the range of the data.

The comparison between the third-order polynomial model estimates and TapeR shows that all
the predictions of the simple parametric model were included within the 95% confidence interval
provided by TapeR. When plotting the estimates from the two techniques for a simulated tree, no
significant differences were apparently found. This comparison is graphically shown in Figure 4 in
which the two models were used to simulate the profiles of two hypothetical groups of Pinus nigra
stems, one with a fixed height and variable DBH, the other with a fixed DBH and variable height.
Indeed, the estimates of the two methods were linearly correlated with highly statistically significant
parameters (p < 0.0001, cor = 0.99).
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Table 3. Estimated coefficients for the third order polynomial function.

Coefficient Estimate Standard Error t value Pr(>|t|)

α 0.590 0.00072 817.57 < 2.2 × 10−16 ***

β −1.265 0.03827 −25.92 < 2.2 × 10−16 ***

γ −2.075 0.04882 −42.50 < 2.2 × 10−16 ***

δ −20.44 0.02213 −418.71 < 2.2 × 10−16 ***

p-value: < 2.2 × 10−16 - R-squared: 0.9749 - Residuals Standard error: 0.04882
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4. Discussion

The use of adequate models both for prediction and data collection (i.e., balancing the sample size)
deeply affected the results of this experiment. Stem taper functions are basic tools in forest management
practices to derive information on the value of the timber yield and the statistical evaluation of the
sample size offers a means for a rational approach to sample size optimization. The non-destructive
two-stages sampling strategy presented here stressed the importance of the data as the focal point for
modelling to derive reliable and accurate stem taper functions presents high data requirements. While
the effective MAE was much lower than selected relative error (5%) we used, in Equation (1), reliable
models were built with all the four tested equations. Then, concerning the sample balancing, Equation
(1) proved to be too general and not reliable. However, this result is in line with previous studies in
forest monitoring where the same issue was found [28]. Model selection has often been acknowledged
as one of the most critical steps by modellers in many research fields, correctly achievable through
a statistical comparison [30–32]. Several studied also focused on data quality when dealing with
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climate [33,34], forest mensuration [35,36] and modelling activities in general [37–39]. While data
quality was detected here once more as the focal point for cost-effective research, the same cannot be
said for modelling tools. A small difference within the group of parametric/non-parametric models
was found here but a wide discrepancy between them and the mixed-modelling TapeR package
was determinant for the model selection. In our case, while the linear model and the second-order
polynomial function were simply inadequate to represent the sigmoidal shape of the point cloud we
obtained, all the equations were not able to handle the autocorrelated structure of the data we measured.
Conversely, the mixed-model approach can handle the hierarchical structure of the data where the
assumption of the independency between sampling units is violated. The profile measurements of
trees are a typical example in which the measurement made at height H+h is strongly correlated to the
data collected at height H [27].

The economic sustainability of forest harvesting in artificial Pins nigra spp. as well as in the case
of many other forest tree species has often been acknowledged as one of the main shortcomings for the
application of successful forest management [5,40]. Many Pinus nigra stands originally planted in the
20th century in Italy (but also in many other EU countries) are quite like those we studied and are still
abandoned to natural dynamics even if characterised by an increasing biodiversity level and ecological
success [21,22]. The use of the provided model might support renewed interest around this species,
allowing forest enterprises and stakeholders in general to plan forest harvesting according to the
expected timber potentially achievable from a specific forest stand. This could also be positively seen
by research in order to test the provided equation and implement novel modelling tools in addition to
stem taper equations. The use of a small spatial extent for sampling might be a potential shortcoming
of the provided models where “just” 202 trees were measured from two stands. This issue might not
allow our model to be applied for estimates in other regions where different growth trends might occur.

Even if further research efforts are necessary to test and validate the provided model, the genesis
of analysed stands, i.e., artificial stands with seeds coming from different parts of Italy [8,11] and,
consequently, the possible mixture of considered genotypes, could be seen as an additional positive
trait of this study. In any case, the low variability of the dataset we compiled, and the high predictive
power of TapeR package needs to be confirmed by additional study cases. Even if object-oriented tools
and portals were packed by modellers or informatic engineers with more sophisticated modelling
methods such as Neural Networks or Random Forests algorithm, the use of mixed-effects models
like TapeR seems to be compulsory for unbiased estimates. The idea of running simple equations
outside the framework of a programming language such as R, Phyton or MATLAB should be, in
our opinion, discouraged in favour of web-tools and cloud computing systems able to exploit the
full functionality of statistical environments, such as R, even by common users. The development of
taper functions cannot be limited to simple equations on sheets. Forest planning and management
activities require timber volume estimations with adequate accuracy and taper functions are developed
in order to improve timber volume estimation capacity and particularly the accuracy of timber value
estimation, as the volume is divided into assortments [5,41]. Growth and yield models are used to
provide longer-term scenario evaluations and to develop planning decisions [16,42,43].

In other ordinary processes like the detailed planning of harvesting operations, the requirement
is to estimate timber volume, possibly by assortment, for given stands [12]. In this case, more
general-purpose software environments are used, typically spreadsheets. Timber volume estimation
functions are generally sufficiently simple. Ordinary operators can implement the functions required
in the spreadsheet computations and a relatively simple model representing a taper function offers
the opportunity for an ordinary user of spreadsheets to implement it and perform some testing and
get acquainted with the tool. However, an effective use of the function as a tool for optimizing the
subdivision of the total volume in the desired assortments is not obtainable with only basic capacity in
the use of spreadsheets. Taper estimation implies, in the optimization process, a pair of functions: one
estimating the diameter of the cross section at any given height, and the second coherent with the first,
estimating up to which height the diameter of the cross section is greater than a given threshold [19,27].
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Looking shortly ahead of the current situation, basic coding competencies and skills will become
unavoidable as cloud-based environments extend and forest operators will need to connect databases
and processing modules to perform the tally, store temporary and final measurements and observations,
process the data and produce the required reports.

5. Conclusions

The paper title includes the question “is a more complex model required?”. The model finally
selected as a taper function for the studied Pinus nigra stems is quite simple; it is a third-degree
polynomial estimating the relative diameter for any given relative height along the stem. A competitive
solution is the output that R-package TapeR can provide. While implementing our solution in a
spreadsheet or in any programming framework is straightforward, the competitive solution can
be conveniently used to develop estimation procedures within the R environment, but it is quite
complicated to transfer to other environments.

Since the use of stem taper equations is still rare in the forestry sector, despite their potential as
basic forest management tools, the complexity of the tool has a relevant impact on the possibility for
their use to spread. To this end, the simple solution developed offers several opportunities for foresters
that are not specialised in coding to get in direct touch with the tool.

An option for more complex models to be made accessible by non-specialists could be providing
Internet-based solutions. TapeR functions and the parameter set that can be estimated with the
package can be incapsulated in the shiny web app (https://shiny.rstudio.com/) which can be a powerful
environment where also non-statistician users might be able to generate stem taper profiles using more
complex β-Splines and mixed models.
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