

Growth responses to climate variability of mixed tree species in a Mediterranean conifer forest (Monte Morello)

Gianluigi Mazza

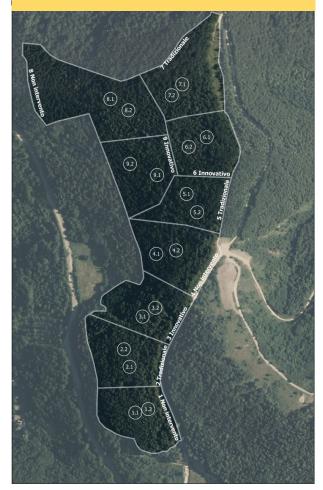
CREA – Research Centre for Forestry and Wood Arezzo (Italy)

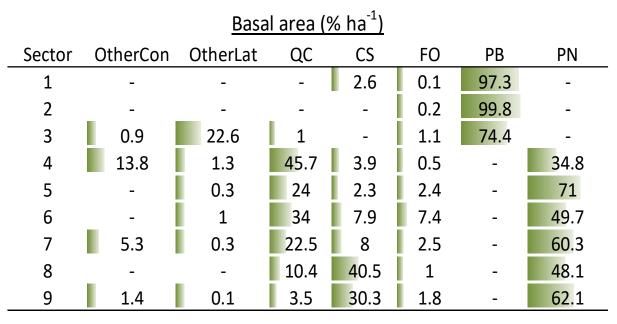
gianluigi.mazza@crea.gov.it

Research context

✓ Understanding the dynamics of mixed forests derived from pine plantations in Mediterranean area is important to define proactive management measures towards sustainable <u>adaptation</u> to and <u>mitigation</u> of <u>climate change</u>.

✓ <u>Favouring native broadleaves</u> is widely recognized as one of the main objectives for restoring mature pines plantations with the aim to increase their <u>stability</u>, biodiversity and resilience





Study site:

9 sectors –18 monitoring plots

Shannon-Weaver Diversity Index (H')

Tree density	Basal area	
1.28	1.14	
1.51	1.05	
3.65	2.36	
4.78	4.56	
3.49	2.26	
3.15	3.03	
3.94	3.45	
3.32	2.72	
3.42	2.56	

NUOVI APPROCCI PER LA GESTIONE SOSTENIBILE DEL PINO NERO: biodiversità e mitigazione

Main objectives

We carried out an intra-stand tree-ring analysis on *Pinus nigra* Arnold., *Pinus halepensis* subsp. *brutia* Ten. and *Quercus cerris* L. to address the following questions:

- Do oak and pines differ in the main climatic variables driving tree growth?
- ii) Do oak and pines respond differently to past drought events?

Dendroclimatological analysis

P. brutia, *P. nigra* and *Q. cerris* \longleftrightarrow precipitation and SPEI*

	P. nigra	P. brutia	Q. cerris
Time span (N° years)	1939-2016 (78)	1977-2016 (40)	1949-2016 (68)
N° cores/ N° trees	35/33	38/36	12/11
BAI ± SD (cm²)	8.8 ± 4.5	22.6 ± 8.8	12.5 ± 7.3
Glk	0.74	0.69	0.66
MS	0.32	0.24	0.27

monthly-seasonal and yearly climatic variables for a total of about 280 combination

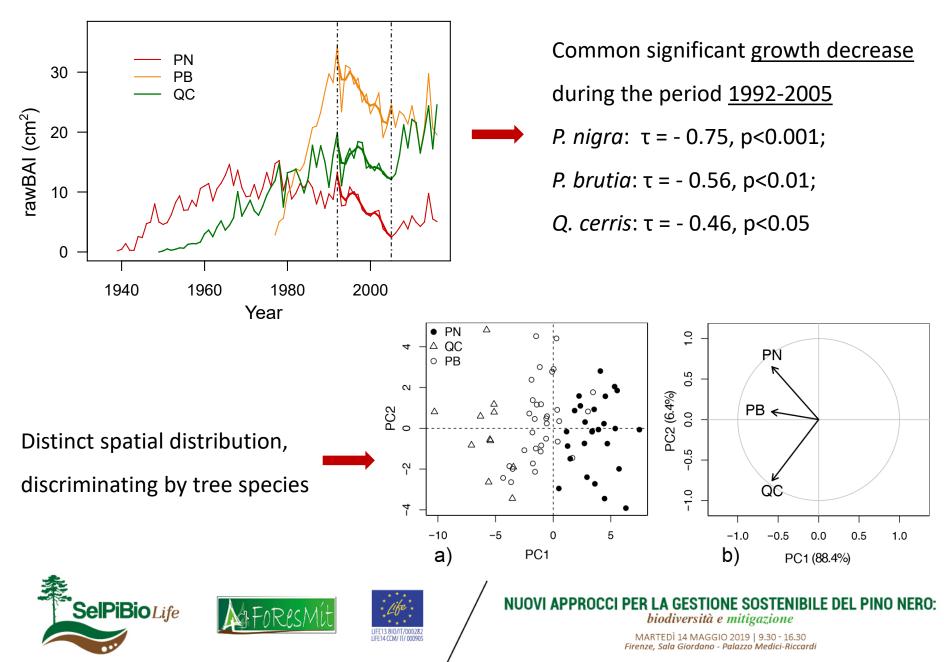
* Standardised Precipitation Evapotranspiration Index

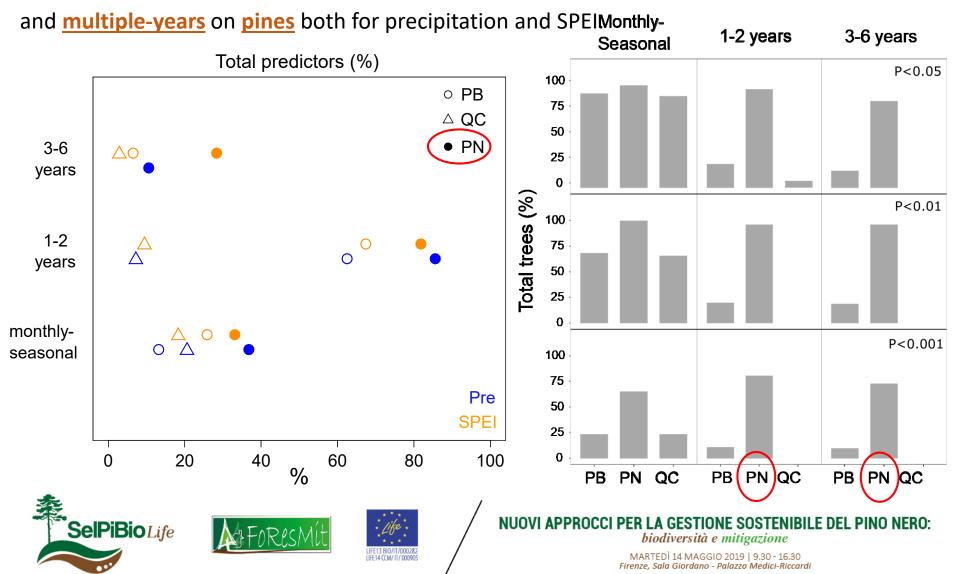
NUOVI APPROCCI PER LA GESTIONE SOSTENIBILE DEL PINO NERO: biodiversità e mitigazione

Growth responses to drought

Raw basal-area increments (BAIs) during drought years were compared to the years before and after the drought to quantitatively analyze growth decreases and recoveries. <u>Percent growth changes</u> were calculated as follows:

- ✓ drought year vs. prior year: [(BAI₀ BAI₋₁)/BAI₋₁] x 100,
- ✓ post-drought year vs. pre-drought year: [(BAI₊₁ BAI₋₁)/BAI₋₁] x 100,
- ✓ drought year vs. 5 years pre-drought: [(BAI₀ BAI₋₅)/BAI₋₅] x 100,
- ✓ 5 years post-drought vs. drought year: $[(BAI_{+5} BAI_0)/BAI_0] \times 100$,
- ✓ 5 years post-drought vs. 5 years pre-drought: [(BAI₊₅ BAI₋₅)/BAI₋₅] x 100




ala Giordano - Palazzo Medici-Riccardi

Main results: growth trend

Main results: climate growth relationships

The overall distinctive feature was the contrasting range of climatic variables driving treegrowth: the primary influence of current year <u>monthly-seasonal</u> climatic drivers on <u>Q. cerris</u>

Main results: growth responses to drought

✓ Pines exhibited a similar pattern,
but *P. nigra* highest % values

✓<u>Q. cerris</u> showed in most cases positive growth changes with the lowest % values when drought years were compared with both 1 and 5 pre-drought years;

✓ Q. cerris showed the highest % trees able to recover the growth level of pre-drought when comparing 5 year post drought with both 1 and 5 year pre-drought years

Drought vs.

prior year

25

15

5

-5

-15

-25

100

80

60

40

20

0

Frees (%)

3AI changes (%)

Drought vs. 5

year predrought

Post- vs. predrought

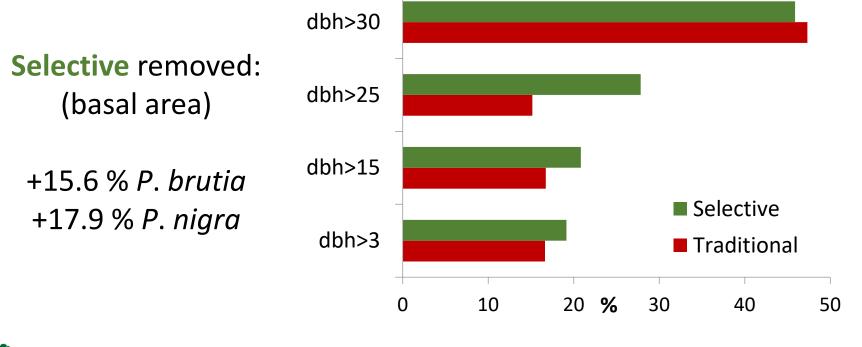
5 year post

drought vs.

drought

5 year post vs.

5 year pre-


drought

P. niara P. brutia Q. cerris

NUOVI APPROCCI PER LA GESTIONE SOSTENIBILE DEL PINO NERO: biodiversità e mitigazione

Main results: effect of thinning

In Monte Morello site <u>Selective</u> thinning, favouring the more drought resistant and resilient species, appeared more appropriate for <u>increasing</u> and/or improving the <u>resilience at the stand level</u> under future drought intensification.

biodiversità e mitigazione MARTEDÌ 14 MAGGIO 2019 | 9.30 - 16.30 Firenze, Sala Giordano - Palazzo Medici-Riccardi

Main conclusion

✓ The primary influence of current year <u>monthly-seasonal</u> (mainly June and May-June-July) climatic drivers on <u>Q. cerris</u> and <u>multiple-years</u> on <u>pines</u> both for precipitation and SPEI.

✓ <u>P. nigra</u> resulted the species with the highest % of single trees correlated with the climatic variables driving growth (limiting factors): <u>high sensitivity to</u> <u>climate</u> in the study site.

 \checkmark <u>Q. cerris</u> resulted the species <u>less affected by drought events</u> showing the highest growth recovery.

✓ Selective thinning appeared more appropriate for <u>increasing</u> the <u>resilience</u> <u>at the stand level.</u>

Thanks for your attention

NUOVI APPROCCI PER LA GESTIONE SOSTENIBILE DEL PINO NERO: biodiversità e mitigazione